Arrangements of Lines with a Large Number of Triangles
نویسنده
چکیده
An arrangement of lines is constructed by choosing n diagonals of the regular 2/i-gon. This arrangement is proved to form at least n(n 3)/3 triangular cells.
منابع مشابه
Triangles in Euclidean Arrangements
The number of triangles in arrangements of lines and pseudolines has been object of some research Most results however concern arrangements in the projective plane In this article we add results for the number of triangles in Euclidean arrange ments of pseudolines Though the change in the embedding space from projective to Euclidean may seem small there are interesting changes both in the resul...
متن کاملStraight Line Arrangements in the Real Projective Plane
Let A be an arrangement of n pseudolines in the real projective plane and let p 3 (A) be the number of triangles of A. Grünbaum has proposed the following question. Are there infinitely many simple arrangements of straight lines with p 3 (A) = 1 3 n(n − 1)? In this paper we answer this question affirmatively.
متن کاملOn Tensor Product of Graphs, Girth and Triangles
The purpose of this paper is to obtain a necessary and sufficient condition for the tensor product of two or more graphs to be connected, bipartite or eulerian. Also, we present a characterization of the duplicate graph $G 1 K_2$ to be unicyclic. Finally, the girth and the formula for computing the number of triangles in the tensor product of graphs are worked out.
متن کاملSome finite groups with divisibility graph containing no triangles
Let $G$ be a finite group. The graph $D(G)$ is a divisibility graph of $G$. Its vertex set is the non-central conjugacy class sizes of $G$ and there is an edge between vertices $a$ and $b$ if and only if $a|b$ or $b|a$. In this paper, we investigate the structure of the divisibility graph $D(G)$ for a non-solvable group with $sigma^{ast}(G)=2$, a finite simple group $G$ that satisfies the one-p...
متن کاملArrangements of Pseudocircles: Triangles and Drawings
A pseudocircle is a simple closed curve on the sphere or in the plane. The study of arrangements of pseudocircles was initiated by Grünbaum, who defined them as collections of simple closed curves that pairwise intersect in exactly two crossings. Grünbaum conjectured that the number of triangular cells p3 in digon-free arrangements of n pairwise intersecting pseudocircles is at least 2n−4. We p...
متن کامل